Hyperperfect Numbers With Three Different Prime Factors

By Herman J. J. te Riele

Abstract

The existence of hyperperfect numbers with more than two different prime factors is shown by five examples.

Recently, Minoli [2] has defined n-hyperperfect numbers as positive integers m such that there is some positive integer n with

$$
\begin{equation*}
m=1+n[\sigma(m)-m-1] . \tag{1}
\end{equation*}
$$

1-hyperperfect numbers are the classical perfect numbers. Minoli gives a list of all n-hyperperfect numbers $<1,500,000$ with $n>1$, and these numbers have the form $p^{\alpha} q$, where p and q are prime numbers, $p<q$ and $\alpha \in \mathbf{N}$. Minoli wonders whether all hyperperfect numbers might have this form. By using a well-known technique, which was used, for instance, by Euler [1] to compute amicable number pairs, we have computed five hyperperfect numbers, each with three different prime factors.

Let $m=p q r, p<q<r$ prime numbers, be an n-hyperperfect number. By (1) we have

$$
p q r=1+n(p q+p r+q r+p+q+r) .
$$

Now, if we assume that p and n are given, this is a quadratic equation in q and r. We write it as

$$
(p-n) q r-n(p+1) q-n(p+1) r=1+n p
$$

Multiplying by $(p-n)$, and adding $n^{2}(p+1)^{2}$ to both sides yields

$$
\begin{array}{r}
{[(p-n) q-n(p+1)][(p-n) r-n(p+1)]} \\
=(p-n)(1+n p)+n^{2}(p+1)^{2}
\end{array}
$$

If $A B, A<B$, is a factorization of the known right-hand side, then we can write

$$
q=[n(p+1)+A] /(p-n), \quad r=[n(p+1)+B] /(p-n) .
$$

If now both q and r are integers and prime, then $p q r$ is an n-hyperperfect number. Clearly, a small value of ($p-n$) will facilitate finding integers q and r. The simplest choice is $p-n=1$; this gives

$$
\begin{equation*}
q=p^{2}-1+A, \quad r=p^{2}-1+B, \quad A B=p^{4}-p^{2}-p+2, \quad A<B . \tag{2}
\end{equation*}
$$

If $A=1$, then $q=p^{2}$, not a prime. If $p \equiv 2(\bmod 3)$, then $p^{2}-1 \equiv 0(\bmod 3)$ and $A B=p^{4}-p^{2}-p+2 \equiv 0(\bmod 3)$, so that $3 \mid A$ or $3 \mid B$; hence, at least one of q

[^0]and r is composite. Excluding these cases we have checked (2) for all primes $p<300$ (and $n=p-1$), and all possible factorizations $A B$. We found the following five hyperperfect numbers, each with three different prime factors:

1570153	$=13 \cdot 269 \cdot 449$		$n=12$,
3675965445337	$=229 \cdot 67187 \cdot 238919$		$n=228$,
8898807853477	$=283 \cdot 112087 \cdot 280537$		$n=282$,
72315968283289	$=277 \cdot 78541 \cdot 3323977$		$n=276$,
348231627849277	$=223 \cdot 49807 \cdot 31352557$		$n=222$.

Remark. All n-hyperperfect numbers in Minoli's table with odd n are instances of the following rule: if both $p=6 k-1$ and $q=12 k+1$ are prime numbers for some $k \in \mathbf{N}$, then $p^{2} q$ is an n-hyperperfect number with $n=4 k-1$. We conjecture that there are infinitely many hyperperfect numbers.

Note added in proof. By generalizing the technique described in this note, we have constructed seven more hyperperfect numbers (for details, see [3]):

60110701	$=7^{2} \cdot 383 \cdot 3203$	$n=6$,
13544168521	$=13^{2} \cdot 2347 \cdot 34147$	$n=12$,
8992165119733	$=19^{2} \cdot 6871 \cdot 3625243$	$n=18$,
217158581600773	$=43^{2} \cdot 84319 \cdot 1392883$	$n=42$,
7972299196816043329	$=97^{2} \cdot 913571 \cdot 927465611$	$n=96$,
16736320978727037068273	$=73^{3} \cdot 31293799 \cdot 306914431$	$n=72$,
1605108132959576124160002571981	$=1327 \cdot 6793 \cdot 10020547039 \cdot 17769709449589$	

Mathematical Centre

Kruislaan 413
1098 SJ Amsterdam, The Netherlands

[^1]
[^0]: Received June 5, 1980.
 1980 Mathematics Subject Classification. Primary 10A20.
 Key words and phrases. Hyperperfect numbers.

[^1]: 1. L. Euler, "De Numeris Amicabilibus", Leonhardi Euleri Opera Omnia, Teubner, Leipzig and Berlin, Ser. I, vol. 2, 1915, pp. 86-162.
 2. D. Minoli, "Issues in nonlinear hyperperfect numbers," Math. Comp., v. 34, 1980, pp. 639-645.
 3. H. J. J. te Riele, Hyperperfect Numbers With More Than Two Different Prime Factors, Report NW 87/80, Mathematical Centre, Amsterdam, August 1980.
